Deformed Kernel Based Extreme Learning Machine
نویسندگان
چکیده
The extreme learning machine (ELM) is a newly emerging supervised learning method. In order to use the information provided by unlabeled samples and improve the performance of the ELM, we deformed the kernel in the ELM by modeling the marginal distribution with the graph Laplacian, which is built with both labeled and unlabeled samples. We further approximated the deformed kernel by means of random feature mapping. The experimental results showed that the proposed semi-supervised extreme learning machine tends to achieve outstanding generalization performance at a relatively faster learning speed than traditional semi-supervised learning algorithms.
منابع مشابه
A Novel Extreme Learning Machine Classification Model for e-Nose Application Based on the Multiple Kernel Approach
A novel classification model, named the quantum-behaved particle swarm optimization (QPSO)-based weighted multiple kernel extreme learning machine (QWMK-ELM), is proposed in this paper. Experimental validation is carried out with two different electronic nose (e-nose) datasets. Being different from the existing multiple kernel extreme learning machine (MK-ELM) algorithms, the combination coeffi...
متن کاملApplication of the Extreme Learning Machine for Modeling the Bead Geometry in Gas Metal Arc Welding Process
Rapid prototyping (RP) methods are used for production easily and quickly of a scale model of a physical part or assembly. Gas metal arc welding (GMAW) is a widespread process used for rapid prototyping of metallic parts. In this process, in order to obtain a desired welding geometry, it is very important to predict the weld bead geometry based on the input process parameters, which are voltage...
متن کاملA Novel Extreme Learning Machine Based on Hybrid Kernel Function
Extreme learning machine is a new learning algorithm for the single hidden layer feedforward neural networks (SLFNs). ELM has been widely used in various fields and applications to overcome the slow training speed and over-fitting problems of the conventional neural network learning algorithms. ELM algorithm is based on the empirical risk minimization, without considering the structural risk an...
متن کاملعیبیابی سازهها با استفاده از شاخص تابع پاسخ فرکانسی و مدل جایگزین مبتنی بر الگوریتم ماشین یادگیری حداکثر بهینه شده
Utilizing surrogate models based on artificial intelligence methods for detecting structural damages has attracted the attention of many researchers in recent decades. In this study, a new kernel based on Littlewood-Paley Wavelet (LPW) is proposed for Extreme Learning Machine (ELM) algorithm to improve the accuracy of detecting multiple damages in structural systems. ELM is used as metamo...
متن کاملOutlier Detection Using Extreme Learning Machines Based on Quantum Fuzzy C-Means
One of the most important concerns of a data miner is always to have accurate and error-free data. Data that does not contain human errors and whose records are full and contain correct data. In this paper, a new learning model based on an extreme learning machine neural network is proposed for outlier detection. The function of neural networks depends on various parameters such as the structur...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 8 شماره
صفحات -
تاریخ انتشار 2013